Horizontal gene transfer and the evolution of bacterial and archaeal population structure.
نویسندگان
چکیده
Many bacterial and archaeal lineages have a history of extensive and ongoing horizontal gene transfer and loss, as evidenced by the large differences in genome content even among otherwise closely related isolates. How ecologically cohesive populations might evolve and be maintained under such conditions of rapid gene turnover has remained controversial. Here we synthesize recent literature demonstrating the importance of habitat and niche in structuring horizontal gene transfer. This leads to a model of ecological speciation via gradual genetic isolation triggered by differential habitat-association of nascent populations. Further, we hypothesize that subpopulations can evolve through local gene-exchange networks by tapping into a gene pool that is adaptive towards local, continuously changing organismic interactions and is, to a large degree, responsible for the observed rapid gene turnover. Overall, these insights help to explain how bacteria and archaea form populations that display both ecological cohesion and high genomic diversity.
منابع مشابه
Evidences of lateral gene transfer between archaea and pathogenic bacteria
Acquisition of new genetic material through horizontal gene transfer has been shown to be an important feature in the evolution of many pathogenic bacteria. Changes in the genetic repertoire, occurring through gene acquisition and deletion, are the major events underlying the emergence and evolution of bacterial pathogens. However, horizontal gene transfer across the domains i.e. archaea and ba...
متن کاملGenomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generali...
متن کاملPhylogenetic distribution of DNA-binding transcription factors in bacteria and archaea
We have addressed the distribution and abundance of 75 transcription factor (TF) families in complete genomes from 90 different bacterial and archaeal species. We found that the proportion of TFs increases with genome size. The deficit of TFs in some genomes might be compensated by the presence of proteins organizing and compacting DNA, such as histone-like proteins. Nine families are represent...
متن کاملSearch for a 'Tree of Life' in the thicket of the phylogenetic forest
BACKGROUND Comparative genomics has revealed extensive horizontal gene transfer among prokaryotes, a development that is often considered to undermine the 'tree of life' concept. However, the possibility remains that a statistical central trend still exists in the phylogenetic 'forest of life'. RESULTS A comprehensive comparative analysis of a 'forest' of 6,901 phylogenetic trees for prokaryo...
متن کاملProkaryotic genomes: the emerging paradigm of genome-based microbiology.
Comparative analysis of the complete sequences of seven bacterial and three archaeal genomes leads to the first generalizations of emerging genome-based microbiology. Protein sequences are, generally, highly conserved, with -70% of the gene products in bacteria and archaea containing ancient conserved regions. In contrast, there is little conservation of genome organization, except for a few es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in genetics : TIG
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2013